Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fabry–Perot CCD annular-summing spectroscopy: study and implementation for aeronomy applications

Not Accessible

Your library or personal account may give you access

Abstract

The technique of Fabry–Perot CCD annular-summing spectroscopy, with particular emphasis on applications in aeronomy, is discussed. Parameter choices for optimizing performance by the use of a standard format CCD array are detailed. Spectral calibration methods, techniques for determining the ring pattern center, and effects imposed by limited radial resolution caused by superpixel size, variable by on-chip binning, are demonstrated. The technique is carefully evaluated experimentally relative to the conventional scanning Fabry–Perot that uses a photomultiplier detector. We evaluate three extreme examples typical of aeronomical spectroscopy using calculated signal-to-noise ratios. Predicted sensitivity gains of 10–30 are typical. Of the cases considered, the largest savings in integration time are estimated for the day sky thermospheric O1D case, in which the bright sky background dominates the CCD read noise. For profile measurements of faint night sky emission lines, such as exospheric hydrogen Balmer-α, long integration times are required to achieve useful signal-to-noise ratios. In such cases, CCD read noise is largely overcome. Predictions of a factor of 10–15 savings in integration time for night sky Balmer-α observations are supported by field tests. Bright, isolated night sky lines such as thermospheric O1D require shorter integration times, and more modest gains dependent on signal level are predicted. For such cases it appears from estimate results that the Fabry–Perot CCD annular-summing technique with a conventional rectangular format may be outperformed by a factor of 2–5 by special CCD formats or by unusual optical coupling configurations that reduce the importance of read noise, based on the ideal transmission for any additional optics used in these configurations.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulation and analysis of a multi-order imaging Fabry–Perot interferometer for the study of thermospheric winds and temperatures

Jonathan J. Makela, John W. Meriwether, Yiyi Huang, and Peter J. Sherwood
Appl. Opt. 50(22) 4403-4416 (2011)

All-sky Doppler interferometer for thermospheric dynamics studies

Manfred A. Biondi, Dwight P. Sipler, Mark E. Zipf, and Jeffrey L. Baumgardner
Appl. Opt. 34(10) 1646-1654 (1995)

Imaging Fabry–Perot spectrometer for twilight observations

F. Bahsoun-Hamade, R. H. Wiens, A. Moise, and G. G. Shepherd
Appl. Opt. 33(6) 1100-1107 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.