Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spectral splitting for an InGaP/GaAs parallel junction solar cell

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a design of a diffractive optical element to split the solar spectrum into two separate parts for a laterally arrayed InGaP/GaAs solar cell is presented. Optical simulation is done by using the three-dimensional finite-difference time-domain method and the results are demonstrated to evaluate the optical performance of the designed structure. Anti-reflection coating for the designed splitter is also put forth. In addition to the optical analysis, electrical simulations are performed and current density-voltage and power density-voltage curves are presented in order to explain the electrical performance of the InGaP/GaAs solar cell by implementing the designed spectrum splitter. The results of the electrical simulations show that the designed InGaP/GaAs solar cell’s best efficiency is 34.7% under unconcentrated sunlight. Further improvement is feasible if the parameters of the spectral splitting structure are optimized by the incorporation of non-intuitive optimization algorithms. Lastly, light trapping strategies can also be considered to enhance the efficiency of the solar cells.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications

Jung Woo Leem, Hee Kwan Lee, Dong-Hwan Jun, Jonggon Heo, Won-Kyu Park, Jin-Hong Park, and Jae Su Yu
Opt. Express 22(S2) A328-A334 (2014)

Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells

Ya-Ju Lee, Yung-Chi Yao, Meng-Tsan Tsai, An-Fan Liu, Min-De Yang, and Jiun-Tsuen Lai
Opt. Express 21(S6) A953-A963 (2013)

Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells

G. W. Shu, J. Y. Lin, H. T. Jian, J. L. Shen, S. C. Wang, C. L. Chou, W. C. Chou, C. H. Wu, C. H. Chiu, and H. C. Kuo
Opt. Express 21(S1) A123-A130 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.