Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Epsilon-near-zero three-dimensional metamaterial for manipulation of terahertz beams

Abstract

Metamaterials offer the potential of unprecedented refractive indices and evolution into metadevices for the manipulation of electromagnetic waves. However, the potential of the epsilon-near-zero (ENZ) concept has not been fully demonstrated in the terahertz waveband. Most conventional ENZ lenses have a uniform distribution of refractive indices in spite of their three-dimensional structure. Here, inspired by the ENZ concept, we demonstrate the two-dimensional distribution of a three-dimensional ENZ lens realized by circular openings of varying diameters on metal plates and apply it to a metal-slit array lens with gradient indices of 0<neff<1. The measurements of a fabricated metal-slit array lens with circular openings observe the focusing effect of a terahertz wave. We also apply the ENZ concept to the design of microlens arrays. The control of the gradient of the ENZ potentially offers a wide range of applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Terahertz beam focusing through designed oblique metal-slit array

Takehito Suzuki, Masashi Sekiya, and Hideaki Kitahara
Appl. Opt. 58(15) 4007-4013 (2019)

Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats
Opt. Express 21(12) 14907-14917 (2013)

Terahertz epsilon-near-zero graded-index lens

Víctor Torres, Víctor Pacheco-Peña, Pablo Rodríguez-Ulibarri, Miguel Navarro-Cía, Miguel Beruete, Mario Sorolla, and Nader Engheta
Opt. Express 21(7) 9156-9166 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.