Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reference-plane-based fast pixel-by-pixel absolute phase retrieval for height measurement

Not Accessible

Your library or personal account may give you access

Abstract

Absolute phase retrieval is essential for height measurement in digital fringe projection. However, projections of additional structured patterns that are normally required for phase unwrapping increase the measurement complexity. In this paper, we propose two reference-plane-based pixel-by-pixel absolute phase retrieval techniques with as few projections as possible, suitable for different object depth ranges. The wrapped phase on the object is absolutely unwrapped by referring just to the absolute phase map on the reference plane. Single-frequency absolute phase retrieval with one-reference-plane-based calibration is first proposed for objects within a height limit that equals a calibrated system constant. To extend the measurement depth range, dual-frequency absolute phase retrieval with two parallel reference planes is further proposed. The additional low frequency is used to choose the unwrapping reference from the two reference plane phases for unwrapping the high-frequency phase. Moreover, the proposed techniques are capable of high-frequency absolute phase unwrapping for objects with step-height surface discontinuities. Experiments have been conducted to demonstrate the efficiency of the proposed two techniques.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamic 3-D shape measurement in an unlimited depth range based on adaptive pixel-by-pixel phase unwrapping

Minghui Duan, Yi Jin, Huaian Chen, Yan Kan, Changan Zhu, and Enhong Chen
Opt. Express 28(10) 14319-14332 (2020)

Pixel-by-pixel absolute phase retrieval assisted by an additional three-dimensional scanner

Yatong An and Song Zhang
Appl. Opt. 58(8) 2033-2041 (2019)

Pixel-wise absolute phase unwrapping using geometric constraints of structured light system

Yatong An, Jae-Sang Hyun, and Song Zhang
Opt. Express 24(16) 18445-18459 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.