Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transport-based model for turbulence-corrupted imagery

Abstract

A new model for turbulence-corrupted imagery is proposed based on the theory of optimal mass transport. By describing the relationship between photon density and the phase of the traveling wave, and combining it with a least action principle, the model suggests a new class of methods for approximately recovering the solution of the photon density flow created by a turbulent atmosphere. Both coherent and incoherent imagery are used to validate and compare the model to other methods typically used to describe this type of data. Given its superior performance in describing experimental data, the new model suggests new algorithms for a variety of atmospheric imaging and wave propagation applications.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
De-multiplexing vortex modes in optical communications using transport-based pattern recognition

Se Rim Park, Liam Cattell, Jonathan M. Nichols, Abbie Watnik, Timothy Doster, and Gustavo K Rohde
Opt. Express 26(4) 4004-4022 (2018)

Using turbulence scintillation to assist object ranging from a single camera viewpoint

Chensheng Wu, Jonathan Ko, Joseph Coffaro, Daniel A. Paulson, John R. Rzasa, Larry C. Andrews, Ronald L. Phillips, Robert Crabbs, and Christopher C. Davis
Appl. Opt. 57(9) 2177-2187 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved