Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles

Not Accessible

Your library or personal account may give you access

Abstract

An experiment for the measurement of atmospheric CO2 vertical profiles up to a 7 km altitude was successfully conducted using a 1.6 μm ground-based differential absorption Lidar developed by Tokyo Metropolitan University. To achieve a high pulse repetition rate, large power output, and high frequency stabilization, we developed a new 1.6 μm Lidar system using an optical parametric generator (OPG) transmitter. Unlike the previous system’s transmitter, OPG does not need a resonator. We amplified its output with two optical parametric amplifiers. We validated our system against an in situ sensor and found the difference between their CO2 concentration measurements to be 0.06 ppm.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile

Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata, Masahisa Nakazato, and Tetsu Sakai
Appl. Opt. 48(4) 748-757 (2009)

Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm

Gerd A. Wagner and David F. Plusquellic
Appl. Opt. 55(23) 6292-6310 (2016)

Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh
Appl. Opt. 47(7) 944-956 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved