Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence

Not Accessible

Your library or personal account may give you access

Abstract

The computed tomography of chemiluminescence (CTC) technique was applied for the first time to a real highly turbulent swirl flame setup, using a large number of CCD cameras (Nq=24 views), to directly reconstruct the three-dimensional instantaneous and time-averaged chemiluminescence fields. The views were obtained from a 172.5° region (in one plane) around the flame, and the CTC algorithm [Floyd et al., Combust. Flame 158, 376 (2011)] was used to reconstruct the flame by discretizing the domain into voxels. We investigated how the reconstructions are affected by the views’ arrangement and the settings of the algorithm, and considered how the quality of reconstructions should be assessed to ensure a realistic description of the capabilities of the technique. Reconstructions using Nq12 were generally better when the cameras were distributed more equiangularly. When Nq was severely low (e.g., 3), the reconstruction could be improved by using fewer voxels. The paper concludes with a summary of the strengths and weaknesses of the CTC technique for examining a real turbulent flame geometry and provides guidance on best practice.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Time-resolved measurements of a swirl flame at 4  kHz via computed tomography of chemiluminescence

Tao Yu, Can Ruan, Hecong Liu, Weiwei Cai, and Xingcai Lu
Appl. Opt. 57(21) 5962-5969 (2018)

Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view

Hecong Liu, Tao Yu, Man Zhang, and Weiwei Cai
Appl. Opt. 56(25) 7107-7115 (2017)

Sparse regularization-based reconstruction for 3D flame chemiluminescence tomography

Ying Jin, Zhenyan Guo, Yang Song, Zhenhua Li, Anzhi He, and Guohai Situ
Appl. Opt. 60(3) 513-525 (2021)

Supplementary Material (1)

NameDescription
Visualization 1       Reconstructed instantaneous 3D chemiluminescence field of Flame I, rotated about an axis 45° to the burner exit plane to illustrate the flame geometry detail.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.