Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Complexity-enhanced polarization-resolved chaos in a ring network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays

Not Accessible

Your library or personal account may give you access

Abstract

The complexity properties of polarization-resolved chaotic signals generated in a ring network of vertical-cavity surface-emitting lasers (VCSELs) mutually coupled with multiple delays are investigated quantitatively by using the proposed mean permutation entropy (MPE). For direct comparison, the complexity of polarization-resolved chaos in a ring network of VCSELs coupled with single delay is also considered. The effects of injection current, coupling strength, and frequency detuning on the chaotic complexity for both a single-delay ring network (SDRN) and a multiple-delay ring network (MDRN) are evaluated quantitatively and compared by the MPE. The effects of internal parameters of VCSELs on the complexity are also discussed, and the correlation properties between different polarization-resolved modes are also analyzed. It is shown that the complexity of chaos in two polarization-resolved modes of VCSELs in MDRN is much higher than those in SDRN in a much wider parameter region. Besides, wider range of injection current, coupling strength, and frequency detuning can be tuned to achieve the enhancement of chaotic complexity in MDRN. These results provide an effective quantifier, the proposed MPE, to evaluate quantitatively the complexity of chaos generated in systems with multiple delays, and the multichannel complexity-enhanced polarization-resolved chaos generated in MDRN of mutually coupled VCSELs is extremely meaningful for the chaos-based random number generators.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Chaos synchronization in mutually coupled 1550-nm vertical-cavity surface-emitting lasers with parallel polarizations and long delay time

A. Quirce, A. Valle, H. Thienpont, and K. Panajotov
J. Opt. Soc. Am. B 33(1) 90-98 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved