Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Convex relaxation for illumination control of multi-color multiple-input-multiple-output visible light communications with linear minimum mean square error detection

Not Accessible

Your library or personal account may give you access

Abstract

Visible light communications (VLC) using multi-color light-emitting diodes (LEDs) can support simultaneous high-speed data rate and high-quality lighting. However, since the radiation spectrum of LEDs has a limited width, spectral overlapping will result in multi-color cross talk even when optical filters are applied at the receivers. Moreover, since LEDs are used for illumination and wireless data transmission in the meantime, both lighting quality and communication performance must be considered in VLC systems. In this paper, we consider a multiple-input-multiple-output with low-complexity linear minimum mean square error detection to collaboratively manage the cross talk by maximizing the minimum signal-to-interference-plus-noise ratio (SINR) subject to chromaticity constraint based on MacAdam ellipse, luminance constraint, and signal range constraint. A sub-optimal convex relaxation is proposed to attack the SINR maximization problem. Extensive simulations indicate that the proposed method provides very efficient solutions and outperforms the conventional wave-division multiplexing scheme under the illumination constraint.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
On the Coverage of Multiple-Input Multiple-Output Visible Light Communications [Invited]

Chen Chen, Wen-De Zhong, and Dehao Wu
J. Opt. Commun. Netw. 9(9) D31-D41 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved