Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network

Not Accessible

Your library or personal account may give you access

Abstract

In this study, for the first time to the best of our knowledge, a combination of the laser-induced breakdown spectroscopy (LIBS) technique and artificial neural network (ANN) analysis has been implemented for the identification of energetic materials, including TNT, RDX, black powder, and propellant. Also, aluminum, copper, inconel, and graphite have been used for more accurate investigation and comparison. After the LIBS test and spectrum acquisition on all samples in both air and argon ambient, optimized neural networks were designed by LIBS data. Based on input data, three ANN algorithms are proposed: the first is fed with the whole LIBS spectra in air (ANN1) and the second with the principle component analysis (PCA) scores of each spectrum in air (ANN2) and the other with the PCA scores of the spectrum in Ar (ANN3). According to the results, error of the network is very low in ANN2 and 3 and the best identification and discrimination was obtained by ANN3. After these, in order to validate and for more investigation of this combined method, we also used Al/RDX standard samples for analysis.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced breakdown spectroscopy analysis of energetic materials

Frank C. De Lucia, Russell S. Harmon, Kevin L. McNesby, Raymond J. Winkel, and Andrzej W. Miziolek
Appl. Opt. 42(30) 6148-6152 (2003)

Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm

Kuohu Li, Lianbo Guo, Jiaming Li, Xinyan Yang, Rongxing Yi, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 56(4) 935-941 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.