Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband and highly absorbing multilayer structure in mid-infrared

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we have designed and experimentally demonstrated a broadband absorber in the mid-infrared region based on the impedance matching method. The absorber is made of planar multilayered dielectric and metallic films without involving lithography in fabrication. Our measurements reveal high absorption over 85% in the wavelength range of 2.2–6.2 μm. This wideband absorption is shown to be independent of the polarization and can be maintained over a range of incident angles up to 45°. The resultant absorber has potential applications for thermal shielding, camouflaging, sensing, etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Broadband terahertz tunable multi-film absorber based on phase-change material

Hao Peng, Ke Yang, Zhenxin Huang, and Zhi Chen
Appl. Opt. 61(11) 3101-3106 (2022)

Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers

Timothy D. Corrigan, Dong Hun Park, H. Dennis Drew, Shy-Hauh Guo, Paul W. Kolb, Warren N. Herman, and Raymond J. Phaneuf
Appl. Opt. 51(8) 1109-1114 (2012)

Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

Manohar Chirumamilla, Alexander S. Roberts, Fei Ding, Deyong Wang, Peter Kjær Kristensen, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Mater. Express 6(8) 2704-2714 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.