Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multispecies absorption spectroscopy of detonation events at 100 kHz using a fiber-coupled, time-division-multiplexed quantum-cascade-laser system

Abstract

A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers

Andrew W. Caswell, Sukesh Roy, Xinliang An, Scott T. Sanders, Frederick R. Schauer, and James R. Gord
Appl. Opt. 52(12) 2893-2904 (2013)

Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson
Appl. Opt. 53(9) 1938-1946 (2014)

Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows

Wen Yu Peng, Christopher S. Goldenstein, R. Mitchell Spearrin, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 55(33) 9347-9359 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved