Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photoreduced silver nanoparticles grown on femtosecond laser ablated, D-shaped fiber probe for surface-enhanced Raman scattering

Abstract

Surface-enhanced Raman scattering (SERS) probes are made by facile photochemical deposition of silver nanoparticles on a femtosecond (fs) laser ablated, D-shaped fiber. The structure and surface morphology of the probe are investigated by scanning electron microscopy. High-quality SERS signals are detected using Rhodamine 6G molecules via an in situ sensing mode. Experimental results show that the SERS signals increase with the increase of the length of fs laser ablated, D-shaped zone. Our D-shaped fiber SERS probe shows a feasible method for a large active area, high performance, and real-time and remote measurement of SERS signals in biochemical analysis.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering

Xuan Yang, Nazar Ileri, Cindy C. Larson, Thomas C. Carlson, Jerald A. Britten, Allan S. P. Chang, Claire Gu, and Tiziana C. Bond
Opt. Express 20(22) 24819-24826 (2012)

Fabrication of a three-dimensional (3D) SERS fiber probe and application of in situ detection

Luping Meng, Liang Shang, Sujuan Feng, Zhibing Tang, Cuixia Bi, Hongyan Zhao, and Guangqiang Liu
Opt. Express 30(2) 2353-2363 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.