Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Green laser interferometric metrology system with sub-nanometer periodic nonlinearity

Not Accessible

Your library or personal account may give you access

Abstract

This paper describes the design and realization of a heterodyne laser interferometer system that is applicable to metrology comparison. In this research, an iodine-stabilized Nd:YAG laser at 532 nm served as the light source. Two spatially separated beams with different offset frequencies are generated by two acousto-optic modulators to prevent any source mixing and polarization leakage. The interferometry components are integrated to a monolithic prism to reduce the difficulty of the light path adjustment and to guarantee the measuring accuracy. The experimental results show there is a sub-nanometer periodic nonlinearity, which mainly results from the ghost reflection. Placed in a vacuum chamber, the interferometer is applicable for measuring comparison using a piezo nanopositioner and a precision translation stage. Finally, a commercial interferometer is calibrated with the interferometer system.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Heterodyne interferometer with subatomic periodic nonlinearity

Chien-ming Wu, John Lawall, and Richard D. Deslattes
Appl. Opt. 38(19) 4089-4094 (1999)

Balanced plane-mirror heterodyne interferometer with subnanometer periodic nonlinearity

Peng-cheng Hu, Peng Chen, Xue-mei Ding, and Jiu-bin Tan
Appl. Opt. 53(24) 5448-5452 (2014)

Analytical modeling of the periodic nonlinearity in heterodyne interferometry

Chien-Ming Wu and Richard D. Deslattes
Appl. Opt. 37(28) 6696-6700 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.