Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Filtering role of the sensor pixel in Fourier and Fresnel digital holography

Not Accessible

Your library or personal account may give you access

Abstract

Digital holography is a modern imaging technique whereby a propagated object wave interferes with a known (spherical or plane) reference wave at a plane where a digital sensor is situated. The resulting intensity distribution is recorded by a CCD or CMOS sensor array to produce a digital hologram. This digital hologram can be processed in several ways to isolate the real image term. Using a propagation algorithm, the object wave can be numerically reconstructed from this real image term. Several factors limit the performance of such imaging systems, such as the finite extent of the sensor array and the finite size of the equally spaced sensor pixels, which average the light intensity incident upon them. Theoretical results indicate that in a Fresnel-based system the role of these finite-size pixels is to attenuate higher spatial frequencies by convolving the reconstructed signal with a rectangular function of equal size to the light-sensitive area of the pixel. However, when a spherical reference wave is used, as is the case with “lensless” Fourier-based systems, spatial frequencies will not be attenuated; rather it is the complex amplitude of the reconstructed signal that will be attenuated. In this manuscript we explore this question in more detail, providing new theoretical and experimental results. By assuming a fully developed speckle field for the object wave, we examine the first-order statistical distributions for the integrated intensity of the object wave, and the interference term, using numerical simulations. We show that the statistical distribution of the interference term can be changed, by varying the sphericity of the reference wave. Experimental results are provided where we compare the performance of a Fresnel and Fourier holographic system as a function of pixel size.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative space-bandwidth product analysis in digital holography

Daniel Claus, Daciana Iliescu, and Peter Bryanston-Cross
Appl. Opt. 50(34) H116-H127 (2011)

Coherence requirement in digital holography

Daniel Claus, Daciana Iliescu, and John M. Rodenburg
Appl. Opt. 52(1) A326-A335 (2013)

Magnified reconstruction of digitally recorded holograms by Fresnel–Bluestein transform

John F. Restrepo and Jorge Garcia-Sucerquia
Appl. Opt. 49(33) 6430-6435 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved