Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distinguishing octane grades in gasoline using terahertz metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

Distinguishing octane numbers of commercial gasoline is experimentally demonstrated by use of single split-ring resonator metamaterials functioning at terahertz frequencies. The differences in frequency-dependent absorption coefficients and refractive indices of various grades of gasoline lead to a modification in the surrounding dielectric environment and consequently the resonance properties of the planar metamaterials. This consequently enables a distinct frequency shift in the inductive-capacitive electric dipolar resonances. This paper reveals that such metamaterial arrays, as highly sensitive chemical sensors, have promising potential in petroleum industrial applications.

Full Article  |  PDF Article
More Like This
Terahertz surface plasmon sensor for distinguishing gasolines

Guanlin Liu, Mingxia He, Zhen Tian, Jingyan Li, and Jiazheng Liu
Appl. Opt. 52(23) 5695-5700 (2013)

Terahertz quantitatively distinguishing gasoline mixtures using multiparameter-combined analysis

Yi-nan Li, Zhou-mo Zeng, Jian Li, Zhen Tian, Li-jun Sun, and Nan Zhou
Appl. Opt. 52(30) 7382-7388 (2013)

Sub-diffraction thin-film sensing with planar terahertz metamaterials

Withawat Withayachumnankul, Hungyen Lin, Kazunori Serita, Charan M. Shah, Sharath Sriram, Madhu Bhaskaran, Masayoshi Tonouchi, Christophe Fumeaux, and Derek Abbott
Opt. Express 20(3) 3345-3352 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.