Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry

Not Accessible

Your library or personal account may give you access

Abstract

We present a liquid level sensing system for cryogenic fluids based on an array of aluminum-coated fiber Bragg gratings written in high-attenuation fibers (HAFs) interrogated by frequency-shifted interferometry (FSI). The sensors are heated up optically through the absorption of light at the core of the HAF sections. The distinct thermal response of sensors in the liquid from that in the gas provides an unambiguous means to detect the liquid level. FSI allows the sensors to have overlapped spectral response, and, therefore, has the potential of accommodating a larger number of sensors in the array. The measurement of liquid nitrogen level using this system was experimentally demonstrated. The successful combination of aluminum-coated HAF Bragg grating sensors and the FSI technique promises a viable solution for liquid level sensor networks at cryogenic temperatures.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management

Tong Chen, Qingqing Wang, Rongzhang Chen, Botao Zhang, Yuankun Lin, and Kevin P. Chen
Appl. Opt. 51(26) 6282-6289 (2012)

Large-capacity multiplexing of near-identical weak fiber Bragg gratings using frequency-shifted interferometry

Yiwen Ou, Ciming Zhou, Li Qian, Dian Fan, Chunfu Cheng, and Huiyong Guo
Opt. Express 23(24) 31484-31495 (2015)

Method of hybrid multiplexing for fiber-optic Fabry–Perot sensors utilizing frequency-shifted interferometry

Yiwen Ou, Ciming Zhou, Angui Zheng, Chunfu Cheng, Dian Fan, Jiadi Yin, Hui Tian, Mengmeng Li, and Ying Lu
Appl. Opt. 53(35) 8358-8365 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.