Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis

Not Accessible

Your library or personal account may give you access

Abstract

We report on a transverse load sensor with enhanced sensitivity through the use of a birefringent interferometer based on a highly birefringent photonic crystal fiber (HB-PCF). The transverse load sensitivity can be enhanced by using a fabricated HB-PCF having larger air holes on its fast axis. The transverse load sensitivity was measured to be high: 2.17nm/(N/cm). The temperature-induced undesirable effects can be ignored because transmission outputs of our HB-PCF were stable with the change of the temperature. The sensing probe can be compact because of its high birefringence with the order of 103 and no bending loss.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal

Erick Reyes-Vera, Cristiano M. B. Cordeiro, and Pedro Torres
Appl. Opt. 56(2) 156-162 (2017)

Highly birefringent photonic crystal fiber based on a double-hole unit

Daru Chen and Genzhu Wu
Appl. Opt. 49(9) 1682-1686 (2010)

High birefringent rhombic-hole photonic crystal fibers

Bin Hu, Min Lu, Weinan Li, Kuaisheng Zou, Zhiguang Zhou, Aoxiang Lin, and Ning Li
Appl. Opt. 49(31) 6098-6101 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.