Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO 2

Not Accessible

Your library or personal account may give you access

Abstract

The Advanced Space Carbon and Climate Observation of Planet Earth (A-SCOPE) mission, a candidate for the next generation of European Space Agency Earth Explorer Core Missions, aims at measuring CO2 concentration from space with an integrated path differential absorption (IPDA) lidar. We report the optimization of the lidar instrument operating wavelengths, building on two performance models developed to assess measurement random errors from the instrument, as well as knowledge errors on geophysical and spectral parameters required for the measurement processing. A promising approach to decrease sensitivity to water vapor errors by 1 order of magnitude is reported and illustrated. The presented methods are applicable for any airborne or spaceborne IPDA lidar.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Evaluation of an airborne triple-pulsed 2  μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements

Tamer F. Refaat, Upendra N. Singh, Jirong Yu, Mulugeta Petros, Syed Ismail, Michael J. Kavaya, and Kenneth J. Davis
Appl. Opt. 54(6) 1387-1398 (2015)

Double-pulse 1.57  μm integrated path differential absorption lidar ground validation for atmospheric carbon dioxide measurement

Juan Du, Yadan Zhu, Shiguang Li, Junxuan Zhang, Yanguang Sun, Huaguo Zang, Dan Liu, Xiuhua Ma, Decang Bi, Jiqiao Liu, Xiaolei Zhu, and Weibiao Chen
Appl. Opt. 56(25) 7053-7058 (2017)

Airborne atmospheric carbon dioxide measurement using 1.5 µm laser double-pulse IPDA lidar over a desert area

Chuncan Fan, Juxin Yang, Jiqiao Liu, Lingbing Bu, Qin Wang, Chong Wei, Yang Zhang, Xiaopeng Zhu, Shiguang Li, Huaguo Zang, and Weibiao Chen
Appl. Opt. 63(9) 2121-2131 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.