Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light

Not Accessible

Your library or personal account may give you access

Abstract

We show that a two-step reconstruction method can be adapted to improve the quantitative accuracy of the refractive index reconstruction in phase-contrast diffuse optical tomography (PCDOT). We also describe the possibility of imaging tissue glucose concentration with PCDOT. In this two-step method, we first use our existing finite-element reconstruction algorithm to recover the position and shape of a target. We then use the position and size of the target as a priori information to reconstruct a single value of the refractive index within the target and background regions using a region reconstruction method. Due to the extremely low contrast available in the refractive index reconstruction, we incorporate a data normalization scheme into the two-step reconstruction to combat the associated low signal-to-noise ratio. Through a series of phantom experiments we find that this two-step reconstruction method can considerably improve the quantitative accuracy of the refractive index reconstruction. The results show that the relative error of the reconstructed refractive index is reduced from 20% to within 1.5%. We also demonstrate the possibility of PCDOT for recovering glucose concentration using these phantom experiments.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase-contrast diffuse optical tomography for in vivo breast imaging: a two-step method

Ruixin Jiang, Xiaoping Liang, Qizhi Zhang, Stephen Grobmyer, Laurie L. Fajardo, and Huabei Jiang
Appl. Opt. 48(24) 4749-4755 (2009)

Diffuse optical tomography guided quantitative fluorescence molecular tomography

Yiyong Tan and Huabei Jiang
Appl. Opt. 47(12) 2011-2016 (2008)

Quantitative fluorescence tomography with functional and structural a priori information

Yuting Lin, Han Yan, Orhan Nalcioglu, and Gultekin Gulsen
Appl. Opt. 48(7) 1328-1336 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved