Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing

Not Accessible

Your library or personal account may give you access

Abstract

Investigating shear flows is important in technical applications as well as in fundamental research. Velocity measurements with high spatial resolution are necessary. Laser Doppler anemometry allows nonintrusive precise measurements, but the spatial resolution is limited by the size of the measurement volume to ∼ 50 µm. A new laser Doppler profile sensor is proposed, enabling determination of the velocity profile inside the measurement volume. Two fringe systems with contrary fringe spacing gradients are generated to determine the position as well as the velocity of passing tracer particles. Physically discriminating between the two measuring channels is done by a frequency-division-multiplexing technique with acousto-optic modulators. A frequency-doubled Nd:YAG laser and a fiber-optic measuring head were employed, resulting in a portable and flexible sensor. In the center of the measurement volume of ∼1-mm length, a spatial resolution of ∼5 µm was obtained. Spatially resolved measurements of the Blasius velocity profile are presented. Small velocities as low as 3 cm/s are measured. The sensor is applied in a wind tunnel to determine the wall shear stress of a boundary layer flow. All measurement results show good agreement with the theoretical prediction.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens

Lars Büttner, Jürgen Czarske, and Hans Knuppertz
Appl. Opt. 44(12) 2274-2280 (2005)

Laser Doppler field sensor for high resolution flow velocity imaging without camera

Andreas Voigt, Christian Bayer, Katsuaki Shirai, Lars Büttner, and Jürgen Czarske
Appl. Opt. 47(27) 5028-5040 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved