Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hyperosmotic chemical agent’s effect on in vivo cerebral blood flow revealed by laser speckle

Not Accessible

Your library or personal account may give you access

Abstract

We investigated the influence of a hyperosmotic agent (glycerol) on the normal physiological function of tissue by applying the glycerol in vitro and in vivo to rabbit dura mater to assess the changes in the tissue’s optical properties. We used a laser speckle imaging technique to study the effect of epidurally applied glycerol on resting cerebral blood flow (CBF). Our results showed that resting CBF decreased as the transparency of the dura mater increased. The challenges for the design of an optical clearing technique were not only the clearing effects and the duration of the action of the chemical agents but also the influence of the glycerol on the tissue’s normal physiological function.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamic laser speckle imaging of cerebral blood flow

P. Zakharov, A.C. Völker, M.T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber
Opt. Express 17(16) 13904-13917 (2009)

Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents

R. Cicchi, F. S. Pavone, D. Massi, and D. D. Sampson
Opt. Express 13(7) 2337-2344 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved