Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Relevance of mask-roughness-induced printed line-edge roughness in recent and future extreme-ultraviolet lithography tests

Not Accessible

Your library or personal account may give you access

Abstract

The control of line-edge roughness (LER) of features printed in photoresist poses significant challenges to next-generation lithography techniques such as extreme-ultraviolet (EUV) lithography. Achieving adequately low LER levels requires accurate resist characterization as well as the ability to separate resist effects from other potential contributors to LER. One potentially significant contributor to LER arises from roughness on the mask coupling to speckle in the aerial image and consequently to LER in the printed image. Here I numerically study mask surface roughness and phase roughness to resist LER coupling both as a function of illumination coherence and defocus. Moreover, the potential consequences of this mask effect for recent EUV lithography experiments is studied through direct comparison with experimental through-focus printing data collected at a variety of coherence settings. Finally, the effect that mask roughness will play in upcoming 0.3-numerical-aperture resist testing is considered.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization

Patrick P. Naulleau and Gregg M. Gallatin
Appl. Opt. 42(17) 3390-3397 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved