Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach–Zehnder interferometer: principle of operation and performance assessment

Not Accessible

Your library or personal account may give you access

Abstract

The development of remote-sensing instruments that can be used to monitor several parameters at the same time is important for the study of complex processes such as those that control climate and environment. In this paper the performance of a new concept of lidar receiver that allows for the direct measurement of aerosol and cloud optical properties simultaneously with wind velocity is investigated. This receiver uses a Mach-Zehnder interferometer. Two different configurations, either with four photometric output channels or with fringe imaging on a multichannel detector, are studied. Analytical expressions of the statistical errors are given under the assumption of Gaussian signal spectra. It is shown that similar accuracies can be achieved for both configurations. Performance modeling of the retrieval of semitransparent cloud optical scattering properties and wind velocity was done at different operation wavelengths for a Nd:YAG laser source. Results for such a lidar system onboard an aircraft flying at an altitude of 12 km show that for semitransparent clouds the best results were obtained at 355 nm, with relative standard deviations of 0.5% and 5% for the backscatter and extinction coefficients, respectively, together with a velocity accuracy of 0.2 ms-1. The accuracy of optical properties retrieved for boundary layer aerosols are comparable, whereas the velocity accuracy is decreased to 1 ms-1. Finally, an extrapolation to a large 355-nm spaceborne lidar shows accuracies in the range from 2.5% to 5% for the backscatter coefficient and from 10% to 15% for the extinction coefficient together with a vertical wind speed accuracy of better than 0.5 ms-1 for semitransparent clouds and boundary layer, with a vertical resolution of 500 m and a 100 shot averaging.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations

Albert Ansmann, Ulla Wandinger, Olivier Le Rille, Dulce Lajas, and Anne Grete Straume
Appl. Opt. 46(26) 6606-6622 (2007)

355-nm high spectral resolution airborne lidar LNG: system description and first results

D. Bruneau, J. Pelon, F. Blouzon, J. Spatazza, P. Genau, G. Buchholtz, N. Amarouche, A. Abchiche, and O. Aouji
Appl. Opt. 54(29) 8776-8785 (2015)

Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret
Appl. Opt. 47(3) 346-358 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (80)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved