Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Image preprocessing for improving computational efficiency in implementation of restoration and superresolution algorithms

Not Accessible

Your library or personal account may give you access

Abstract

Computational complexity is a major impediment to the real-time implementation of image restoration and superresolution algorithms in many applications. Although powerful restoration algorithms have been developed within the past few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require a sufficient number of iterations to be executed to achieve the desired resolution improvement that may be needed to meaningfully perform postprocessing image exploitation tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture megapixel imagery data at video frame rates. A major challenge in the processing of these large-format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and superresolution algorithms is of significant practical interest and is the primary focus of this study. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate preprocessing steps together with the superresolution iterations to tailor optimized overall processing sequences for imagery data of specific formats. For substantiating this assertion, three distinct methods for tailoring a preprocessing filter and integrating it with the superresolution processing steps are outlined. These methods consist of a region-of-interest extraction scheme, a background-detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared with the superresolution iterations. A quantitative evaluation of the performance of these algorithms for restoring and superresolving various imagery data captured by diffraction-limited sensing operations are also presented.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Mathematical extrapolation of image spectrum for constraint-set design and set-theoretic superresolution

Supratik Bhattacharjee and Malur K. Sundareshan
J. Opt. Soc. Am. A 20(8) 1516-1527 (2003)

Parallel image restoration with a two-dimensional likelihood-based algorithm

Mark A. Neifeld and Yong Wu
Appl. Opt. 41(23) 4812-4824 (2002)

Small-kernel superresolution methods for microscanning imaging systems

Jiazheng Shi, Stephen E. Reichenbach, and James D. Howe
Appl. Opt. 45(6) 1203-1214 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved