Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Investigation of processes leading to damage growth in optical materials for large-aperture lasers

Not Accessible

Your library or personal account may give you access

Abstract

Damage growth in optical materials used in large-aperture laser systems is an issue of great importance to determine component lifetime and therefore cost of operation. Small size damage sites tend to grow when exposed to subsequent high-power laser irradiation at 355 nm. An understanding of the photophysical processes associated with damage growth is important to devise mitigation techniques. We examine the role of laser-modified material and cracks formed in the crater of damage pits in the damage growth process using fused-silica and deuterated KDP samples. Experimental results indicate that both of the above-mentioned features can initiate plasma formation at fluences as low as 2 J/cm2. The intensity of the recorded plasma emission remains low for fluences up to approximately 5 J/cm2 but rapidly increases thereafter, accompanied by an increase of the size of the damage crater.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Characterization of laser induced damage sites in optical components

Stavros G. Demos, Mike Staggs, Kaoru Minoshima, and James Fujimoto
Opt. Express 10(25) 1444-1450 (2002)

Influence of incidence angle and polarization state on the damage site characteristics of fused silica

Bin Ma, Yanyun Zhang, Hongping Ma, Hongfei Jiao, Xinbin Cheng, and Zhanshan Wang
Appl. Opt. 53(4) A96-A102 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved