Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Threshold of stimulated Brillouin scattering by use of a solar pumped laser

Not Accessible

Your library or personal account may give you access

Abstract

What is to our knowledge the first stimulated Brillouin scattering experiment using a high-power low-gain solar pumped laser is presented. A threshold reflectivity of 0.23% was reached when a peak power of 20.7 kW was used at 7.6 GHz. A cw solar pumped laser was Q-switched with an acousto-optic modulator, and the bandwidth was narrowed with an intracavity etalon. A high polarization ratio (>99.4%) was achieved by use of an intracavity configuration. Higher reflectivity values were limited because of the lack of availability of optical switches.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Threshold reduction for stimulated Brillouin scattering using a multipass Herriott cell

Michael T. Duignan, B. J. Feldman, and W. T. Whitney
J. Opt. Soc. Am. B 9(4) 548-559 (1992)

Stimulated Brillouin scattering and loop threshold reduction with a 2.1-μm Cr,Tm,Ho:YAG laser

A. M. Scott, W. T. Whitney, and M. T. Duignan
J. Opt. Soc. Am. B 11(10) 2079-2088 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved