Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phase-shifting algorithms for electronic speckle pattern interferometry

Not Accessible

Your library or personal account may give you access

Abstract

A set of innovative phase-shifting algorithms developed to facilitate metrology based on electronic speckle pattern interferometry (ESPI) are presented. The theory of a phase-shifting algorithm, called a (5,1) algorithm, that takes five phase-shifted intensity maps before a specimen is deformed and one intensity map after a specimen is deformed is presented first. Because a high-speed camera can be used to record the dynamic image of the specimen, this newly developed algorithm has the potential to retain the phase-shifting capability for ESPI in dynamic measurements. Also shown is an algorithm called a (1,5) algorithm that takes five phase-shifted intensity maps after the specimen is deformed. In addition, a direct-correlation algorithm was integrated with these newly developed (5,1) or (1,5) algorithms to form DC-(5,1) and DC-(1,5) algorithms, which are shown to improve significantly the quality of the phase maps. The theoretical and experimental aspects of these two newly developed techniques, which can extend ESPI to areas such as high-speed dynamic measurements, are examined in detail.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Effects of random vibration in high-speed phase-shifting speckle pattern interferometry

Pablo D. Ruiz, Jonathan M. Huntley, Yuji Shen, C. Russell Coggrave, and Guillermo H. Kaufmann
Appl. Opt. 41(19) 3941-3949 (2002)

Phase-shifted dynamic speckle pattern interferometry at 1 kHz

Jonathan M. Huntley, Guillermo H. Kaufmann, and David Kerr
Appl. Opt. 38(31) 6556-6563 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved