Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers

Not Accessible

Your library or personal account may give you access

Abstract

Distributed-feedback quantum-cascade (QC) lasers are expected to form the heart of the next-generation mid-IR laser absorption spectrometers, especially as they are applied to measurements of trace gases in a variety of environments. The incorporation of room-temperature-operable, single-mode QC lasers should result in highly compact and rugged sensors for real-world applications. We report preliminary results on the performance of a laser absorption spectrometer that uses a QC laser operating at room temperature in a quasi-cw mode in conjunction with balanced ratiometric detection. We have demonstrated sensitivities for N2O [10 parts in 106 volume-mixing ratio for a 1-m path (ppmv-m)] and NO [520 parts in 109 volume-mixing ratio for a 1-m path (ppbv-m)] at 5.4 µm. System improvements are described that are expected to result in a 2 orders of magnitude increase in sensitivity.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum cascade laser sensor for SO2 and SO3 for application to combustor exhaust streams

Wilson T. Rawlins, Joel M. Hensley, David M. Sonnenfroh, David B. Oakes, and Mark G. Allen
Appl. Opt. 44(31) 6635-6643 (2005)

Quantum-cascade laser measurements of stratospheric methane and nitrous oxide

Christopher R. Webster, Gregory J. Flesch, David C. Scott, James E. Swanson, Randy D. May, W. Stephen Woodward, Claire Gmachl, Federico Capasso, Deborah L. Sivco, James N. Baillargeon, Albert L. Hutchinson, and Alfred Y. Cho
Appl. Opt. 40(3) 321-326 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved