Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles

Not Accessible

Your library or personal account may give you access

Abstract

A high-spectral-resolution lidar can measure vertical profiles of atmospheric temperature, pressure, the aerosol backscatter ratio, and the aerosol extinction coefficient simultaneously. We describe a system with these characteristics. The transmitter is a narrow-band (FWHM of the order of 74 MHz), injection-seeded, pulsed, double YAG laser at 532 nm. Iodine-vapor filters in the detection system spectrally separate the molecular and aerosol scattering and greatly reduce the latter (−41 dB). Operating at a selected frequency to take advantage of two neighboring lines in vapor filters, one can obtain a sensitivity of the measured signal-to-air temperature ratio equal to 0.42%/K. Using a relatively modest size transmitter and receiver system (laser power times telescope aperture equals 0.19 Wm2), our measured temperature profiles (0.5−15 km) over 11 nights are in agreement with balloon soundings to within 2.0 K over an altitude range of 2−5 km. There is good agreement in the lapse rates, tropopause altitudes, and inversions. In principle, to invert the signal requires a known density at one altitude, but in practice it is convenient to also use a known temperature at that altitude. This is a scalable system for high spatial resolution of vertical temperature profiles in the troposphere and lower stratosphere, even in the presence of aerosols.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter

Zhi-Shen Liu, Dong Wu, Jin-Tao Liu, Kai-Lin Zhang, Wei-Biao Chen, Xiao-Quan Song, Johnathan W. Hair, and Chiao-Yao She
Appl. Opt. 41(33) 7079-7086 (2002)

Effects of auxiliary atmospheric state parameters on the aerosol optical properties retrieval errors of high-spectral-resolution lidar

Yupeng Zhang, Dong Liu, Zhuofan Zheng, Zhengkuan Liu, DeYun Hu, Bing Qi, Chong Liu, Lei Bi, Kejun Zhang, Chunao Wen, Lingying Jiang, Yuling Liu, Ju Ke, and Zhongming Zang
Appl. Opt. 57(10) 2627-2637 (2018)

Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

Michael Esselborn, Martin Wirth, Andreas Fix, Matthias Tesche, and Gerhard Ehret
Appl. Opt. 47(3) 346-358 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved