Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms

Not Accessible

Your library or personal account may give you access

Abstract

Predictions from Mie theory regarding the wavelength dependence of scattering in tissue from the near UV to the near IR are discussed and compared with experiments on tissue phantoms. For large fiber separations it is shown that rapid, simultaneous measurements of the elastic scatter signal for several fiber separations can yield the absorption coefficient and reduced scattering coefficient. With this information, the size of the scattering particles can be estimated, and this is done for Intralipid. Measurements made at smaller source detector separations support Mie theory calculations, demonstrating that the sensitivity of elastic scatter measurements to morphological features, such as scatterer size, is enhanced when the distance between the source and detector fibers is small.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties

Judith R. Mourant, Irving J. Bigio, Darren A. Jack, Tamara M. Johnson, and Heather D. Miller
Appl. Opt. 36(22) 5655-5661 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved