Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory

Not Accessible

Your library or personal account may give you access

Abstract

The diffusion approximation of the radiative transfer equation is a model used widely to describe photon migration in highly diffusing media and is an important matter in biological tissue optics. An analysis of the time-dependent diffusion equation together with its solutions for the slab geometry and for a semi-infinite diffusing medium are reported. These solutions, presented for both the time-dependent and the continuous wave source, account for the refractive index mismatch between the turbid medium and the surrounding medium. The results have been compared with those obtained when different boundary conditions were assumed. The comparison has shown that the effect of the refractive index mismatch cannot be disregarded. This effect is particularly important for the transmittance. The discussion of results also provides an analysis of the role of the absorption coefficient in the expression of the diffusion coefficient.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results

Fabrizio Martelli, Daniele Contini, Adriana Taddeucci, and Giovanni Zaccanti
Appl. Opt. 36(19) 4600-4612 (1997)

Effect of the scattering delay on time-dependent photon migration in turbid media

I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H.-J. Schwarzmaier
Appl. Opt. 36(25) 6529-6538 (1997)

Analytical approximate solutions of the time-domain diffusion equation in layered slabs

Fabrizio Martelli, Angelo Sassaroli, Yukio Yamada, and Giovanni Zaccanti
J. Opt. Soc. Am. A 19(1) 71-80 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved