Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves

Not Accessible

Your library or personal account may give you access

Abstract

We present analytic expressions for the amplitude and phase of photon-density waves in strongly scattering, spherically symmetric, two-layer media containing a spherical object. This layered structure is a crude model of multilayered tissues whose absorption and scattering coefficients lie within a range reported in the literature for most tissue types. The embedded object simulates a pathology, such as a tumor. The normal-mode-series method is employed to solve the inhomogeneous Helmholtz equation in spherical coordinates, with suitable boundary conditions. By comparing the total field at points in the outer layer at a fixed distance from the origin when the object is present and when it is absent, we evaluate the potential sensitivity of an optical imaging system to inhomogeneities in absorption and scattering. For four types of background media with different absorption and scattering properties, we determine the modulation frequency that achieves an optimal compromise between signal-detection reliability and sensitivity to the presence of an object, the minimum detectable object radius, and the smallest detectable change in the absorption and scattering coefficients for a fixed object size. Our results indicate that (1) enhanced sensitivity to the object is achieved when the outer layer is more absorbing or scattering than the inner layer; (2) sensitivity to the object increases with the modulation frequency, except when the outer layer is the more absorbing; (3) amplitude measurements are proportionally more sensitive to a change in absorption, phase measurements are proportionally more sensitive to a change in scattering, and phase measurements exhibit a much greater capacity for distinguishing an absorption perturbation from a scattering perturbation.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications

X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh
Appl. Opt. 35(19) 3746-3758 (1996)

Autoquenching of spherical photon density waves during propagation in a turbid medium

Alexander G. Luchinin, Mikhail Yu. Kirillin, and Lev S. Dolin
Appl. Opt. 61(22) 6492-6497 (2022)

Measurement of diffuse photon-pairs density wave in a multiple-scattering medium

Li-Ping Yu, Chien Chou, Jheng-Syong Wu, and Yi-Hsin Chan
Appl. Opt. 47(14) 2708-2714 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.