Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis

Not Accessible

Your library or personal account may give you access

Abstract

A quantitative method for determining the depth of burn eschar would aid surgeons in determining whether to excise and subsequently graft a burn wound. We hypothesize that tissue viability could be assessed by an analysis of the spatial modulation of near-field laser speckle by flowing blood. A feasibility study of the technique was performed with two-layer tissue phantoms used to simulate a burn wound. A sheet of polytetrafluoroethylene (PTFE) was used to simulate nonperfused burn eschar, and tissue perfusion within deeper layers was represented by Brownian motion from a scattering solution. A low-power He–Ne laser was focused onto the target, and the resulting speckle image was captured with a CCD camera and stored on a computer for further processing. The diameter of the speckle pattern was found to be directly proportional to the thickness of the overlying layer. These data suggest that the thickness of PTFE can be determined to ±100-μm accuracy with 95% confidence and may be suitable for burn depth detection in vivo.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection

S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, and A. Bilenca
Biomed. Opt. Express 7(1) 225-237 (2016)

Mixed scattering as a problem in laser speckle contrast analysis

Bence Kondász, Béla Hopp, and Tamás Smausz
Appl. Opt. 60(22) 6593-6599 (2021)

Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI)

Adrien Ponticorvo, David M. Burmeister, Bruce Yang, Bernard Choi, Robert J. Christy, and Anthony J. Durkin
Biomed. Opt. Express 5(10) 3467-3481 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved