Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation

Not Accessible

Your library or personal account may give you access

Abstract

We report some recent algorithmic refinements and the resulting simulated and real image reconstructions of fluorescence micrographs by using a blind-deconvolution algorithm based on maximum-likelihood estimation. Blind-deconvolution methods encompass those that do not require either calibrated or theoretical predetermination of the point-spread function (PSF). Instead, a blind deconvolution reconstructs the PSF concurrently with deblurring of the image data. Two-dimensional computer simulations give some definitive evidence of the integrity of the reconstructions of both the fluorescence concentration and the PSF. A reconstructed image and a reconstructed PSF from a two-dimensional fluorescent data set show that the blind version of the algorithm produces images that are comparable with those previously produced by a precursory nonblind version of the algorithm. They furthermore show a remarkable similarity, albeit not perfectly identical, with a PSF measurement taken for the same data set, provided by Agard and colleagues. A reconstructed image of a three-dimensional confocal data set shows a substantial axial smear removal. There is currently an existing trade-off in using the blind deconvolution in that it converges at a slightly slower rate than the nonblind approach. Future research, of course, will address this present limitation.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Strict a priori constraints for maximum-likelihood blind deconvolution

E. Thiébaut and J.-M. Conan
J. Opt. Soc. Am. A 12(3) 485-492 (1995)

Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach

Timothy J. Holmes
J. Opt. Soc. Am. A 9(7) 1052-1061 (1992)

Depth-variant deconvolution of 3D widefield fluorescence microscopy using the penalized maximum likelihood estimation method

Jeongtae Kim, Suhyeon An, Sohyun Ahn, and Boyoung Kim
Opt. Express 21(23) 27668-27681 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.