Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect

Not Accessible

Your library or personal account may give you access

Abstract

Monte Carlo techniques are used to simulate atmospheric point-spread functions (PSF’s) that are appropriate for the viewing geometries typical of the Airborne Visible–Infrared Imaging Spectrometer (AVIRIS). A model sensor is located at an altitude of 20 km and views a Lambertian surface through a horizontally homogeneous and vertically stratified atmosphere. Simulations show the effects on the PSF of variation of the aerosol phase function, the aerosol optical thickness, the sensor viewing angle, and the wavelength. An algorithm that uses the PSF to correct high-contrast images for adjacency effects is developed and applied to an AVIRIS image of Big Pine Key in the Florida Keys. A method to approximate the atmospheric PSF’s without the need to resort to a Monte Carlo simulation is described. Correction of the AVIRIS image through the use of the approximated PSF is consistent with a previous correction. Error analysis is difficult and scene dependent; however, the correction algorithm is shown to be capable of indicating regions of high-contrast images in which conventional estimates of surface-leaving radiance are likely to be unreliable due to adjacency effects.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Adjacency effects on water surfaces: primary scattering approximation and sensitivity study

Richard Santer and Catherine Schmechtig
Appl. Opt. 39(3) 361-375 (2000)

Monte Carlo study of the atmospheric spread function

William A. Pearce
Appl. Opt. 25(3) 438-447 (1986)

Simulation and analysis of adjacency effects in coastal waters: a case study

Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi
Appl. Opt. 53(8) 1523-1545 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (29)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved