Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-speed noncontact profiler based on scanning white-light interferometry

Not Accessible

Your library or personal account may give you access

Abstract

We describe a system for fast three-dimensional profilometry, of both optically smooth and optically rough surfaces, based on scanning white-light techniques. The system utilizes an efficient algorithm to extract and save only the region of interference, substantially reducing both the acquisition and the analysis times. Rough and discontinuous surfaces can be profiled without the phase-ambiguity problems associated with conventional phase-shifting techniques. The system measures steps to 100 μm, scans a 10-μm range in 5 s, and has a smooth surface repeatability of 0.5 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms

Quangsang Vo, Fengzhou Fang, Xiaodong Zhang, and Huimin Gao
Appl. Opt. 56(29) 8174-8185 (2017)

Fast template matching method in white-light scanning interferometry for 3D micro-profile measurement

Yiliang Huang, Jian Gao, Lanyu Zhang, Haixiang Deng, and Xin Chen
Appl. Opt. 59(4) 1082-1091 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved