Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs

Not Accessible

Your library or personal account may give you access

Abstract

The validity of various homogeneous layer models for high-spatial-frequency rectangular-groove (binary) dielectric surface-relief gratings is examined for both nonconical and conical diffraction. In each model the grating is described by a slab of uniaxial material with its optic axis parallel to the grating vector. The ordinary and principal extraordinary indices of the slab depend on the grating filling factor, the substrate and cover refractive indices, and the ratio of the wavelength to the grating period. These indices can be determined by solving two transcendental equations. Higher-order indices are defined as the exact solution to these equations. Second-order indices (second-order dependence on the wavelength-to-period ratio) and first-order indices (no dependence on the wavelength-to-period ratio) are defined by approximate solutions to these equations. Layer models using higher-order and second-order indices are shown to be accurate for high-spatial-frequency gratings, even at wavelength-to-period ratios near the onset of higher-order propagating diffracted waves. These models are used to design example antireflecting gratings on silicon substrates, including designs for conical incidence. All designs are evaluated and optimized by exact rigorous coupled-wave analysis.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Zero-reflectivity homogeneous layers and high spatial-frequency surface-relief gratings on lossy materials

Thomas K. Gaylord, E. N. Glytsis, and M. G. Moharam
Appl. Opt. 26(15) 3123-3135 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved