Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Branch cuts in the phase function

Not Accessible

Your library or personal account may give you access

Abstract

It is shown that, when the scalar field associated with the propagation of a distorted wave function has nulls in its intensity pattern, the phase function that goes with that scalar field has branch points at the location of these nulls and that there are unavoidable 2π discontinuities across the associated branch cuts in the phase function. An analytic proof of this supposition is provided. Sample computer-wave optics propagation results are presented that manifest such unavoidable discontinuities. Among other things, the numerical results are organized in a way that demonstrates that for those cases the branch points are unavoidable. It is found in the sample numerical results that the branch cuts can be positioned so that the 2π discontinuities are located along lines of minimum intensity. This location tends to minimize the physical significance or importance of the discontinuities, a significant consideration for deformable-mirror adaptive optics, for which there is an unavoidable correction error in the vicinity of the branch cut. An algorithm is briefly described that allows the branch cuts to be located automatically and a phase function to be calculated that has discontinuities equal only to 2π discontinuities that are located at the branch cuts.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase unwrapping with the branch-cut method: role of phase-field direction

Bernd Gutmann and Herbert Weber
Appl. Opt. 39(26) 4802-4816 (2000)

Residue vector, an approach to branch-cut placement in phase unwrapping: theoretical study

Salah A. Karout, Munther A. Gdeisat, David R. Burton, and Michael J. Lalor
Appl. Opt. 46(21) 4712-4727 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved