Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling

Not Accessible

Your library or personal account may give you access

Abstract

Ground-based and space-based coherent DIAL water vapor measurement performance at the 2.1-μm Ho:YAG wavelength is presented using a Monte Carlo computer simulation. The stochastic simulation allowed improved modeling of lidar system, platform, atmospheric, and data processing parameter effects on performance and better understanding of their interrelationships. Results indicate that accurate water vapor measurements in the lower troposphere are potentially achievable from both ground- and space-based platforms.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis

Syed Ismail and Edward V. Browell
Appl. Opt. 28(17) 3603-3615 (1989)

Coherent DIAL measurement of range-resolved water vapor concentration

R. Michael Hardesty
Appl. Opt. 23(15) 2545-2553 (1984)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.