Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Double-ended lidar technique for aerosol studies

Not Accessible

Your library or personal account may give you access

Abstract

The technique of inverting a single-ended lidar return to obtain range-dependent atmospheric extinction coefficients requires an assumption concerning the relationship between the volumetric backscatter and extinction coefficients. By comparing the powers returned from a volume common to each of two lidars located at opposite ends of a propagation path the need for this relationship can be eliminated, and the extinction coefficient is determined as a function of position between the two lidars. If the lidars are calibrated, the backscatter coefficients and their relationship to extinction can then be determined as a function of position. We present measurements obtained with two lidars which were operated reciprocally over a slant path of ~1 km during reduced visibility conditions. The measured extinction and backscatter coefficients determined by this method provide the boundary value inputs to both the forward and reverse integration algorithms for inverting the single-ended lidar returns. The accuracies by which both single-ended integration schemes can reproduce the double-ended measurements are examined by allowing the ratio of backscatter to extinction coefficients to be either constant or varying with position between the two lidars as measured.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction

Herbert G. Hughes, Jerry A. Ferguson, and Donald H. Stephens
Appl. Opt. 24(11) 1609-1613 (1985)

Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements

Luc R. Bissonnette and Daniel L. Hutt
Appl. Opt. 34(30) 6959-6975 (1995)

Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction

Yanzeng Zhao, Ting Kaung Lea, and Richard M. Schotland
Appl. Opt. 27(13) 2730-2740 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.