Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation

Not Accessible

Your library or personal account may give you access

Abstract

The theoretical concepts underlying remote sensing of estuarine parameters using laser excitation are examined. The concepts are extended to include Mie scattering as a measure of the total suspended solids and to develop the water Raman signal as an internal standard. Experimental validation of the theory was performed using backscattered laser light from a laboratory tank to simulate a remote-sensing geometry. Artificially prepared sediments and biological cultures were employed to check specific aspects of the theory under controlled conditions. Natural samples gathered from a variety of water types were also analyzed in the tank to further enhance the simulation. The results indicate that it should be possible to remotely quantify total suspended solids, dissolved organics, attenuation coefficient, chlorophyll a, and phycoerythrin in estuarine water using laser excitation.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Basis for spectral curvature algorithms in remote sensing of chlorophyll

Janet W. Campbell and Wayne E. Esaias
Appl. Opt. 22(7) 1084-1093 (1983)

Model for the interpretation of hyperspectral remote-sensing reflectance

Zhongping Lee, Kendall L. Carder, Steve K. Hawes, Robert G. Steward, Thomas G. Peacock, and Curtiss O. Davis
Appl. Opt. 33(24) 5721-5732 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved