Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Balanced cross-rate model for saturated molecular fluorescence in flames using a nanosecond pulse length laser

Not Accessible

Your library or personal account may give you access

Abstract

The balanced cross-rate model is proposed to analyze laser-induced molecular fluorescence signals when the laser pulse length is of the order of nanoseconds. Nanosecond pulse length lasers, specifically Q-switched Nd:YAG-pumped dye lasers, are attractive for saturated molecular fluorescence spectroscopy because of their high peak power and because their short pulse length minimizes the risk of laser-induced chemistry. In the balanced cross-rate model, single upper and lower rotational levels are assumed to be directly coupled by the laser radiation. Because the laser-induced processes which couple these levels are so fast at saturation intensities, a steady state is established between the two levels within picoseconds. Provided that the total population of the two laser-coupled rotational levels is constant during the laser pulse, the total molecular population can be calculated from the observed upper rotational level population using a two-level saturation model and Boltzmann statistics. Numerical simulation of the laser excitation dynamics of OH in an atmospheric pressure H2/O2/N2 flame indicates that the balanced cross-rate model will give accurate results provided that the rotational relaxation rates in the upper and lower sets of rotational levels are approximately equal.

© 1980 Optical Society of America

Full Article  |  PDF Article
More Like This
Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

Campbell D. Carter, J. Thaddeus Salmon, Galen B. King, and Normand M. Laurendeau
Appl. Opt. 26(21) 4551-4562 (1987)

Laser excitation dynamics of OH in flames

Calvin Chan and John W. Daily
Appl. Opt. 19(8) 1357-1367 (1980)

Vibrational energy transfer in laser-excited A2+ OH as a flame thermometer

David R. Crosley and Gregory P. Smith
Appl. Opt. 19(4) 517-520 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.